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Abstract. Approximation methods have found an increasing use in the optimization of complex
engineering systems. The approximation method provides a ‘surrogate’ model which, once con-
structed, can be called instead of the original expensive model for the purposes of optimization.
Sensitivity information on the response of interest may be cheaply available in many applications,
for example, through a pertubation analysis in a finite element model or through the use of adjoint
methods in CFD. This information is included here within the approximation and two strategies
for optimization are described. The first involves simply resampling at the best predicted point, the
second is based on an expected improvement approach. Further, the use of lower fidelity models
together with approximation methods throughout the optimization process is finding increasing pop-
ularity. Some of these strategies are noted here and these are extended to include any information
which may be available through sensitivities. Encouraging initial results are obtained.
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1. Introduction

Expensive computer codes based on mathematical models of some system of
interest are commonly used throughout the engineering industry, for example, a
finite element analysis in structural engineering or a Navier-Stokes model in a
CFD analysis. If the goal is to perform optimization with respect to the model, we
are often overcome by the model’s computational expense. Direct optimization,
which requires many calls to the model of interest, is more often than not,
unrealistic.

As a result, cheap approximations termed ‘surrogates’ to the expensive model
are sought. These are based on only a limited number of calls to the expensive
model, which we term the high fidelity model. Once the surrogate model is
constructed, it replaces the original model for the purposes of optimization.

When we consider optimization, such approximations may be defined locally or
globally. Local approximations, see for instance Myers and Montgomery (1995),
are defined over a specific region of interest, usually about the current best design.
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These approximations are often based on some low order polynomial approxi-
mation of the model’s response and are only valid in some small neighbourhood
surrounding the current best design. The optimization proceeds using a move-limit
or trust-region strategy: we optimize only over the region where the approxima-
tion is valid. Then a new approximation is sought and the process is repeated
until either the maximum allowable number of calls to the model is reached or
an optimum is found.

Global approximations on the other hand try to capture the model’s behaviour
over the entire domain of interest. Many different approximations can be consid-
ered, for example, artificial neural networks (White et al., 1992) or kriging (Sacks
et al., 1989). This paper considers global approximations; nevertheless the ideas
considered could be implemented locally using, say, a trust-region approach. We
consider global optimization based on an advanced kriging model in this paper.
The use of such stochastic processes for global optimization (commonly known
as Bayesian global optimization) dates as far back as 1964 (Kushner, 1964).

Traditionally the information available to construct the surrogate is in terms
of the response only. Nowadays, however, gradient information (i.e. derivatives
of the response with respect to the independent variables or inputs) may also be
cheaply available. For instance, a pertubation analysis of a finite element solution
can lead to a very good approximation of the derivatives, whereas in an adjoint
CFD analysis, all the derivatives are directly available. This information can be
incorporated into the current model. See for example Morris et al. (1993) for a
full description of a kriging model using derivative information.

Section 2 reviews this approach, then Section 3 considers its use in optimiza-
tion. Two models are considered, direct optimization and the Efficient Global
Optimization algorithm of Jones et al. (1998), which has been adapted here
to incorporate derivatives. Two simple examples demonstrate the approach in
Section 4.

One concern with these global approximations is their level of accuracy. These
models are simply forms of curve fitting built using selective calls to the high
fidelity model and do not attempt to incorporate further information on the prob-
lem in hand. As a consequence there has been a growing interest in the use of
simpler low fidelity models in overcoming this burden.

Low fidelity models, while being less accurate than the original high fidelity
models, are generally much cheaper to compute. As an example a low fidelity
model may use a considerably coarser mesh than the high fidelity model. We
may also consider, for example, using an Euler code to approximate an expen-
sive Navier-Stokes model in CFD or only partially converging a solution. The
low fidelity model is used to obtain some ‘rough’ information as to the global
behaviour of the response of interest and selective calls to the high fidelity model
provide ‘corrections’ to this response.

The low fidelity model may be included in the approximation in numerous
ways. Perhaps the simplest way of utilizing information provided by the low
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fidelity model is to consider the difference between the models. Examples of
this approach include its use in structural optimization Leary et al. (to appear),
application to wing design in Balabanov et al. (1998) as well as to problems in
microwave design in Watson and Gupta (1996).

An alternative to considering the difference in low and high fidelity response
would be to consider their ratio. Chang et al. (1993) calculate the ratio and
derivatives at one point in order to construct local approximations and demonstrate
the approach on a wing box model of a high speed civil aircraft. Alexandrov
et al. (1998) combine this approach with a classic trust-region methodology to
produce a local approximation algorithm which alters the size of the trust region
(the portion of the domain on which the local approximation is valid) as the
optimization proceeds.

The general approach, termed a correction response surface model, has been
applied to aerodynamic problems by Hutchinson et al. (1994) and to structural
problems by Vitali et al. (1999).

Another example of the use of low fidelity models in approximations is the
space mapping algorithm, see for instance Bandler et al. (1994), or Bakr et al.
(1998, 1999). Here the idea is to establish a mapping on the inputs such that the
response of the low fidelity model with the mapped parameter agrees with the
response of the high fidelity model. This algorithm is typically applied locally;
nevertheless, a global approximation is also possible.

Recently Wang and Zhang (1997) introduced a knowledge-based neural net-
work model for microwave design; this model used information provided by
empirical functions as knowledge to improve the accuracy of approximations.
Leary et al. (submitted for review) consider a similar model where the empiri-
cal function is replaced by a low fidelity model: this approach also falls into the
multifidelity approximation framework. The approximations can be based on a
neural network model as in Wang and Zhang or on a kriging model as in Leary
et al.

Once more, these multifidelity strategies are typically based on response values
only, the above approaches are easily developed to include derivative information.
One approach is described in detail in Section 5 and an example is given in
Section 5.1. Finally, in Section 6 some conclusions are drawn.

2. Methodology

A kriging model incorporating derivative information (Morris et al., 1993) is first
used to generate fast approximations to the high fidelity response. Before we build
the approximation, however, we need some information on the problem in hand.
This we obtain by evaluating the response of interest y(x), x€R* for several
combinations of the inputs x. We require a systematic means of selecting the
set of points {xV,x?,....x™} called a design of experiments (DOE for short)
within the k£ dimensional space at which to perform computational analyses.
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The 2* vertices formed by the upper and lower bounds of the components of x
form the design bounding box within which the experimental design is created.
Simple experimental designs include 2* full factorial designs that are created by
specifying each design variable at two levels, the lower and upper bounds of the
design bounding box. 3* full factorial designs additionally include the midpoint
of each input. These experimental designs prove expensive, (particularly for large
k) so fractional factorial designs, or alternatively S-optimal designs could be
considered. Many examples of these approaches exist in the response surface
literature, the interested reader should consult Myers and Montgomery (1995) or
alternatively Mead (1988) for further details.

In this paper latin hypercube sampling (Mackay et al., 1979) is used to construct
a space filling set of inputs. The strategy adopted here is the following: many
latin hypercube designs are generated and the one that minimizes

N N 1
22 z (1)
i=1j=i+1 %ij

is chosen. Here d; refers to the distance between points i and j. An example of
choosing three design points in two dimensions is shown in Figure 1.

We note that our design of experiments requires a search over many latin
hypercube designs. When N and k are small we are able to generate good space
filling designs in a computationally efficient manner. However, for large N and/or
k, such a search may result in an expensive process. In this case it may be better
to use special techniques that do not require a potentially expensive search to
generate a good design. One such example are LP, sequences, see Sobol (1979)
for details.
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Figure 1. Latin hypercube design with N =3 and k =2 that minimizes the function in (1).
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Following Morris et al. (1993), we observe the response y and its derivatives
Vs Yas..., Y, at the N design points D={x1,x®,....x™} and store these in the
N (k+1) vector y. We wish to use this information to obtain predictions to y(x*)
where x* is some previously unsampled input.

We represent the uncertainty in y (and hence y,,y,,...,y,) by a Gaussian
stochastic process. We do not assume errors are uncorrelated as in regression,
but that the errors are correlated, the correlation between errors being related to
some distance measure.

We use the correlation function

R, ) e

0,>0, I=1,...,k, (2)
where 6,, [=1,...,k are parameters yet to be determined. This function is a
partial case of that introduced by Jones et al. (1998). The overall correlation,
again following the arguments of Jones et al. (1998), is defined by the product
correlation

k
R(x",xD) =[TR,(x", x"). 3)
I=1

Desirable properties of this correlation function are given in Jones et al. (1998).
For the derivative based approximations we also note that another requirement
of this function is that it is at least twice differentiable, clearly the correlation
function in (2) satisfies this property.

An N(k+1)x N(k+1) correlation matrix C of the sampled data D is then
defined as in Morris et al. (1993). This matrix is defined in terms of the correlation
functions R,, I=1,...,k as well as their first and second derivatives R;,R;/,
I=1,...,k. Similarly an N(k+1) vector of correlations, r between a new point
x* and the previously sampled data D can be defined. For full details of this
procedure we refer the reader to Morris et al. (1993).

The hyperparameters 6,,...,60, are chosen to maximize the likelihood of the
sample. The log-likelihood is expressed as

L(B) = ~N(k+Ding? ~InlC |~ (Vi)' ;' (y—va), )

Here u and o? represent the mean and variance of the data, and v is an
N(k+1) binary vector with 1 in position (i—1)(k+1)+1, i=1,...,N and 0
everywhere else. The dependence on the parameters 6,,..., 0, through the matrix
C is indicated, these parameters here being collectively denoted by 6.

For fixed 6, maximization of L over u and o is obtained by

. VIC)ly
0= _
viC, 'y

()
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and

0'*_2

=T G ). ©

Substituting (5) and (6) into (4) we obtain a function of 6,, /=1, ...,k only, this
we maximize to obtain # and hence an estimate of the overall correlation matrix
C (n.b., the function L(0) is often highly multi-modal and so this maximization
has to be carried out with some care).

Formulas (5) and (6) then provide us with an estimate of i and &2.

The predictor at an unsampled point is then given by (Morris et al., 1993)

) =A+r CTH(y—vA). )

If x* corresponds to a sampled point x”, then r corresponds to the ith row of

C, as a result, the model interpolates the data. The advantage of this model

over ordinary kriging models is that the model also gives the correct gradient

at a sampled point, and as a result, predictions can be far more accurate. It’s

disadvantage is that the correlation matrix of the sampled data is far larger and

hence the maximization of (4) is much more expensive, particularly for large k.
The mean squared error of the predictor is now

i B (1—vTC'r)?
S2(X)=0'2|:]—I‘TC 1F+W . (8)

This measure provides us with an estimate of the accuracy in our model.

3. Strategies for Optimization

The first strategic decision that must be made in following any of the approaches
described here concerns the size of the initial DOE, usually as some fraction of
the total number of expensive evaluations that may be made — this is far from
trivial, but lies beyond the scope of this paper. Having carried out the initial run of
expensive calculations and before performing optimization over our approximate
surface, it should be noted that some sort of model validation could be considered;
for example leave one out cross validation. Strategies for doing this can be found
in Jones et al. (1998).

3.1. DIRECT OPTIMIZATION

The simplest algorithm one could possibly conceive is to optimize over the
approximate surface, then evaluate the response at the optimum found, then add
this point to D by running a new expensive calculation and then form a new
approximation. The process may then be repeated until either convergence is in
some sense achieved or the maximum number of allowable expensive evaluations
is reached. This process is shown in Figure 2.
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Construct inputs using
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possibly in parallel

Construct approximation

y

Find x* such that
x* = argming(x)
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Terminate

Figure 2. The direct strategy.

3.2. EXPECTED IMPROVEMENT

In Jones et al. (1998) an expected improvement algorithm is presented for the
ordinary kriging model, here the algorithm is applied to the derivative based
model.

The expected improvement is a figure of merit that balances local and global
search. It does so by defining an objective which balances the goodness of the
prediction together with the predictions uncertainty. An early example of the
concept can be found in Mockus et al. (1978). The expected improvement is
computed as follows: first the current best function value y,;, =min(y,,y,,...,Yy)
is computed. Consider the example in Figure 3, the function is sampled at five
points. The prediction is shown in Figure 4 where y,;, =2.062 at x=4.2. Let us
consider a Gaussian distribution with mean given by the prediction and standard
deviation given by its standard error. This is also shown in Figure 4 for x=9. The
tail of this distribution will fall below y=y,_, that is, there is some probability
that the function’s value here will improve upon y,,;, shown shaded in the figure.
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Figure 4. Kriging prediction.

Formally, the expected improvement at x is defined as

T e e R ) ©)
where ¢ and & are the standard normal density and distribution functions respec-
tively and y and s are defined using ordinary kriging, see Jones et al. (1998). The
strategy in this case is to resample where the expected improvement is maximized,
then form a new approximation and repeat.

Here we consider derivative based approximations: the strategy remains iden-
tical to the above, the difference being that the prediction comes from (7) and the
standard error comes from (8). The prediction is shown in Figure 5 and is seen to
be much more accurate. The Gaussian distribution is again shown at x =9, this
time using (7) and (8). It is clear that improving the prediction will, in general,
increase the rate of convergence of the procedure.

The overall strategy in this case is given in Figure 6. This approach has been
termed Efficient Global Optimization or EGO for short.
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Figure 6. The expected improvement strategy.

4. Results
4.1. EXAMPLE 1

47

The first example considered is the Branin function (Dixon and Szego, 1978), a
well known test problem in global optimization.The function is defined as

y(x;, %) =a(x,—bx’ +cx,—d)*+e(1—f)cos(x,) +e

(10)
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Branin function

Figure 7. The Branin function.

where a=1,b=5.1/(47*),c=5/m,d=6,e=10, and f =1/(87). The function
has three global minima occuring at (x,,x,)=(9.42478,2.475),(—m,12.275),
(7r,2.275) with function value y(x,, x,)=0.397887 at all three locations. A con-
tour plot of this function in shown in Figure 7.

We consider the initial latin hypercube design shown in Figure 8 (left) con-
sisting of seven computer experiments. Using the direct optimization algorithm
(Figure 2) we then perform ten further function evaluations: results are as shown
in Table 1. For the derivative based EGO algorithm (Figure 6) we also perform 10
additional function evaluations and the results are as shown in Table 2. Contour
plots of the resulting approximations and successive optima for these approaches
are given in Figure 9.
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Figure 8. Experimental design and initial approximation.
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Table 1. Results of direct optimization strategy with
derivative information.

Iteration X X, y(xp,x,)
1 9.5368 1.3163 2.0328
2 —3.0007 11.6592 0.5713
3 9.3993 2.4642 0.4011
4 9.4161 2.4814 0.3984
5 9.4214 2.4841 0.3981
6 9.4214 2.4811 0.3980
7 —3.1984 12.5480 0.4319
8 —3.1376 12.2568 0.3980
9 —3.1183 12.2094 0.4006

10 9.4238 2.4750 0.3979

Clearly this process could be continued until some rigorous convergence crite-
rion was met. For example, when using direct optimization, we may stop when
either ||y". —y"H| < g, or when |[x], — x"t!|| <&, where n and n+1 refer to the
results of two consecutive optimizations and €, €, are small positive constants,
whereas in the EGO algorithm we may stop when the expected improvement is
less than 1% of the current best function value as in Jones et al. (1998). Note that
in Table 2 this condition has already been met and that this number of evalua-
tions (17 in total) is less than the 28 evaluations reported in Jones et al. (1998).
Of course, this is to be expected since we are now incorporating derivative infor-
mation into our approximation. Note also that even if the derivative calculation
that provides all the gradient information at each iteration costs the same as a sin-
gle function evaluation this approach is actually more expensive than the basic
strategy.

The results (Figure 9, left) show that in the direct optimization, the approxi-
mation quickly focuses on two of the global minima, however it misses the third.
This algorithm potentially suffers from the drawback that it will become stuck in
a local minimum. The algorithm is most probably useful when a good solution
is required quickly.

Table 2. Results of EGO with derivative information.

Iteration X X, y(x;,x,)
1 9.5682 1.2335 2.3600
2 —2.9945 11.6441 0.5801
3 9.3946 2.4666 0.4025
4 —4.1000 15.0000 4.5723
5 3.1317 2.1300 0.4217
6 3.1004 2.4003 0.4147
7 —3.2000 12.6000 0.4482
8 3.1215 2.3638 0.4052
9 3.1500 2.2711 0.3982

10 9.4233 2.5125 0.3994
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Expected improvement strategy

o

T

Figure 9. Successive minima and final approximations.

On the other hand the expected improvement algorithm will sample at all points
it thinks are interesting (in Figure 9, right, we see the algorithm sampling around
each of the global minima) and this approach is more likely to obtain the global
minimum, but at the expense of extra function evaluations. One should note here
that the expected improvement function is by definition more strongly multimodal
than the underlying function: a plot of the expected improvement function for
the initial approximation (seven data points) is given in Figure 10. As a result, a
suitable optimization algorithm should be considered. Here simulated annealing

is used to find the point that maximizes expected improvement.

We could even consider a hybrid approach, begin with EGO and later switch
to direct optimization.

Figure 10. Plot of the expected improvement for seven data points.
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4.2. EXAMPLE 2

Structural optimization is of great engineering interest, here the problem is one
of performing optimization subject to certain constraints. How these constraints
are treated within an approximation method is now addressed. Several poten-
tial strategies exist: one possibility would be to reduce the problem to one of
unconstrained optimization using penalty functions, see e.g., Fox (1971).

In this paper, however, the objective and constraints are modelled separately
and we carry out the optimization with respect to the approximate objective using,
e.g., the direct or the EGO approach subject to the approximate constraints. As
the iteration proceeds, the accuracy of both the objective and the constraints in
interesting areas of the design space is increased.

The example we consider is a simple beam problem. The cross sectional
parameters (breadth and height) of a cantilever beam subjected to a uniformly
distributed loading are varied, the requirement here is to minimize the volume of
the cantilever beam subject to certain constraints. Let x, define the breadth and
x, define the height of the cross section. The objective is therefore given as

y=Lxx, (11)

where L is the length of the beam. This is to be minimized while satisfying the
stress constraint

O <250 N/mm?. (12)

The objective here is unimodal and there is unlikely to be any difference
between the direct approach and EGO, we therefore arbitrarily choose to perform
optimization using the direct approach. Here we evaluate the objective (and its
derivatives) using the analytic expression given in (11). Stress evaluations (and
derivatives) come from a finite element model.

We consider a relatively fine mesh (100 element) finite element model of the
above. The objective is cheaply available and can always be evaluated exactly;
only the stress constraint requires solving the resulting system of equations at
some expense. Note that, in general, only expensive responses should be approxi-
mated; this issue is addressed in an example later in the paper. The purpose at this
stage is to demonstrate the general algorithm assuming that both the objective
and constraints are to be modelled.

The actual objective and constraint are shown in Figure 11 (left). We note the
minimum of 6.9281 occurs at (0.5, 0.69281). A latin hypercube design consisting
of three samples is taken as our initial design, a point is then added at the minimum
of the current approximation. Figure 11 (right) shows the initial approximation.
Table 3 shows the result obtained using the derivative based approach.

As the algorithm proceeds, we approach the x* corresponding to the minimum
y and the approximations to volume and stress become more accurate. This is
shown in Figure 12.
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Figure 11. Objective and constraint for the beam problem (actual and first approximation).

Table 3. Results for example 2.

Minimum X X, o Vv o \%
1 0.50011 0.62722 250.00 6.254 304.96 6.274
2 0.50062 0.69117 250.00 6.913 250.89 6.920
3 0.50004 0.69256 250.00 6.922 250.17 6.926
4 0.50003 0.69263 250.00 6.924 250.12 6.927
5 0.50000 0.69269 250.00 6.927 250.09 6.927
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Figure 12. Convergence towards the predicted minimum and accuracy of volume and stress approxi-
mations as the iteration proceeds.

Once again, the use of derivatives critically depends on their cost: if the
derivatives are relatively cheap then the approach is justified. If, however, the
derivatives are obtained by finite differencing the expensive function their use
will rarely make sense.

We note that when considering the EGO algorithm it is important to note that,
in the constrained case, y,;, should be taken as the minimum of the feasible
sampled responses (to see this consider the objective and constraint shown in
Figure 11 (left), if we sample at (0.5, 0.5) then this point is infeasible, however,
Ymin Will occur here and as a result the expected improvement would be virtually
zero over the entire feasible region).
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5. Multifidelity Modelling

We now turn our attention to the use of approximation techniques in combining
a large number of low fidelity analyses together with a small number of high
fidelity analyses for constructing approximations that are both cheap and accurate.
The general strategy is to consider a low fidelity model f, together with only
selective calls to the high fidelity model f,. The inputs for the selective calls to
f. are once again chosen using some design of experiments approach.

The low fidelity model provides some rough global information as to the
response of the high fidelity model. Selective calls to f, are then made to build
corrections to the low fidelity model. We here once again consider the case when
derivative information is cheaply available. The general strategy is shown in
Figure 13 where it is assumed that f, can be calculated at negligible cost.

There is a choice on how to proceed in steps 3 and 4 of this algorithm; consider
the latter first. If the information provided by the low fidelity model is relatively

Construct inputs using
DOE

Evaluated f, and its
derivatives at these points,
possibly in parallel

Construct approxmiations
fe by fusing this information

with information provided
Ey the low fidelity model f, B

Find x* by optimizing
f. or by expected
improvement

Convergence? J
No / \ Yes

Evaluate f,(x*) and Terminate
derivatives and add

to model

Figure 13. The multifidelity modelling strategy.
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accurate, then direct optimization would suffice, as expected improvement would
most likely give a similar result because the difference or ratio of the models
will be of low multimodality. If there is some lack of correlation between the
two models then an expected improvement approach would be more likely to
produce a global minimum. We expect reasonable correlation between the two
models f, and f, if they are representing the same physical system. Hence a
direct approach should suffice. Nevertheless, the reader should be aware that
some lack of correlation between these models would increase the possibility of
the expected improvement approach producing a better solution.

There are many ways in which the low fidelity model can be included inside
the approximation. We here opt for a ratio model, rather than approximate f,
alone we approximate f,/f,. This is known at the sampled points, as are the
derivatives

afe 0fa

ﬂ=f—”” N =1,...,k. (13)
ax, fa

Hence a gradient based approximation 7 can be constructed and 7f, can be used
as a surrogate for f,. When there is good correlation between f, and f, (as there
should be, the models represent the same physical system) this can dramatically
improve the accuracy of the surrogate model, particularly at extrapolated points.
We assume here that f,#0: if this situation should occur then a vertical shift of
the cheap response is necessary. This does not affect the correlation between the
two models.

Other possibilities for incorporating a low fidelity in the approximation include
a difference approach (Leary et al., to appear; Watson and Gupta, 1996), an
approach including weighted low fidelity models (Leary et al., submitted for
review) and a global space mapping approach (Leary et al., to appear).

These models incorporating derivatives will obviously be more accurate than
standard multifidelity strategies that exclude derivative information. Whether they
will yield more efficient strategies for finding global optima than those that do
not make use of gradients is by no means obvious. Any of the above approaches
could be used to demonstrate the effectiveness of utilizing the low fidelity model
in our prediction of f,. We arbitrarily choose to model the ratio in the example
that follows.

5.1. DEMONSTRATIVE EXAMPLE

As a final example we consider the mechanical structure shown in Figure 14. In
this example, we consider the length of each beam to be 1m. The upper horizontal
beams are subjected to a uniformly distributed loading and we wish to minimize
the weight of the structure by varying the thickness of the beams. We here
consider a three variable problem where the beams are of square cross-section.
The three design variables relate to the cross-sectional thicknesses of the lower
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Figure 14. The problem.

horizontal beams, diagonal beams and upper horizontal beams and these are all
varied between 0.05 and 0.1 m.

The minimization would normally be carried out subject to stress and stiffness
constraints, we here consider modelling the stress which is output from a finite
element program. We note that in a static finite element analyses such as those
in the examples presented here, the derivatives are available at a fraction of the
cost of one finite element solution.

The problem is analysed using a simple finite element beam model. Two
levels of complexity are considered, a ‘low fidelity’ model consisting of just two
elements per beam and a ‘high fidelity’ model consisting of 10 elements per
beam. The objective (volume) is cheap to calculate and can be evaluated exactly.
The stress which forms the constraint is more expensive to evaluate, requiring
solution of the finite element model. It is this variation in stress that we attempt
to model using various approaches.

The low fidelity model response is well correlated with the high fidelity
response, nevertheless, there is an error between the models, hence direct opti-
mization of the low fidelity model would yield an inaccurate result. Therefore
improved approximations are sought next.

To assess the overall accuracy, approximations are constructed using a design
of experiments using only eight calls to the high fidelity model. Table 4 shows
the average percent error and maximum percent error in the stress for the various

Table 4. Errors in stress for various surrogate models of the structure in
Figure 14 based on approximating the response at an eight point design of

experiments.

Model Av. % error Max. % etror
Low. fid. 18.04 26.12
Kriging 45.73 92.01
Kriging (inc. deriv.) 23.87 63.04
Multifidelity model 3.17 11.99

Multifidelity model (inc. deriv.) 2.66 11.81
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approaches. These were evaluated on a 6 x6x 6 grid of points spanning the
domain of interest.

These results highlight the use of multifidelity approximations within the opti-
mization process: if the low fidelity model response is reasonably correlated with
the high fidelity model response (which we hope it is — they represent the same
physical system) then great improvements in the accuracy of the approximations
can be made. This would be particularly true in high dimensions when training
data are sparse. Further, if these approximations are to be used for optimization,
the increased accuracy will lead to further improvements in the efficiency of this
process.

6. Conclusions

In this paper, several strategies for approximating outputs from complex engi-
neering codes are described. If sensitivity information is cheaply available, this
can be included in the approximation. A kriging model including derivative infor-
mation is thus used for defining the approximation. If this sensitivity information
is available, including it within the approximation allows comparable results (to
approaches that exclude this information) to be achieved with fewer training data.
Whether or not including such information is justified crucially depends on the
relative costs of calculating the functions involved and their derivatives.

Two strategies for optimization have been described, the first of these updates
the approximate model based on the best point in the current approximation. This
is useful if a relatively good solution is to be found quickly, but in general it will
not find a global minimum in a highly multimodal problem. The second procedure
is based on the notion of expected improvement and provides an approach which,
whilst involving more calls to the original model, is more likely to find the
global minimum. As noted earlier, some hybrid approach may also be appropriate
perhaps using multiple population based updates if suitable parallel processing
hardware is available.

The incorporation of low fidelity models in these approximations is also
described. Once again, optimization can be based on either of the two crite-
ria defined. Including these low fidelity models can dramatically increase the
accuracy of the approximation, hence it can allow the optimization process to
terminate after fewer calls to the high fidelity model, increasing the efficiency of
the approach.

It has been assumed here that derivatives are available at very little cost, this is
the case in the static finite element analyses considered. In, e.g, an adjoint CFD
calculation, to calculate all the derivatives requires a similar computational cost
to that of one expensive function evaluation. The effectiveness of the algorithms
under these circumstances remains to be seen: further work on this type of problem
will be undertaken in the future. These approaches have been demonstrated on
small scale problems where the problems have been kept simple for ease of
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visualization. We plan to apply the approaches proposed herein to more complex
engineering problems (particularly in higher dimensions) in the near future.
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